Advances in Hypertension Research
Course Syllabus

Course Number: GMS 6413
Credit Hours: 2 credit hours
Course Format: This online course is tailored for asynchronous distance learners.

COURSE DESCRIPTION
This is an advanced graduate class, also suitable for postdoctoral students, which will expose students to important, current aspects of Hypertension research. It begins with clinical trials and pharmacogenomics, and then considers mono- and polygenic forms of hypertension, as well as dietary/environmental influences leading to salt dependent hypertension/metabolic syndrome/type 2 diabetes. The course continues with neural control of BP and stress-induced hypertension, then endothelial dysfunction/inflammation in hypertension. The course concludes with hypertension in pregnancy and fetal programming of hypertension. The teaching faculty are drawn from a wide range of disciplines and are all actively involved in research on their areas of expertise.

The structure of this course involves 1) Lectures by research faculty on areas of their expertise; 2) assigned readings; 3) examinations on the lecture material; and 4) a term paper.

TARGET AUDIENCE
This course is designed for individuals wishing for an in-depth understanding of current state of hypertension research. This course will be useful for students who have not met the entry requirements for medical school and who are interested in a career in cardiovascular and/or nephrology medicine, and for those wishing to enhance their applications into Masters and Ph.D. programs in the medical sciences in cardiovascular research.

PREREQUISITES
This course requires a BA or BS and a strong science foundation with at least 5 full semester courses related to biology, chemistry and/or physics. In addition, Principles of Medical Physiology (GMS6400) is required.

To access the journal articles from off-campus, students must use UF's VPN (virtual private network). Instructions and installers for various operating systems can be found at: https://net-services.ufl.edu/provided-services/vpn/clients/ (use your Gatorlink account to log in).

To view the online videos, a high-speed internet connection is required, as well as a web browser with the latest Microsoft Silverlight plugin installed.

Copyright © 2016 Department of Physiology and Functional Genomics, University of Florida. All course contents including faculty lectures are copyrighted, including handouts and spoken or audiovisual representations.
CONTACTS
The course coordinator is Abdel Alli, Ph.D., MPH, Assistant Professor of Physiology and Functional Genomics. Dr. Alli can be contacted using the email function in Canvas.

SCHEDULE
This is a semester long course that is offered each semester. It is designed to be taken as part of the Medical Physiology Certificate course and should be preceded by GMS 6400C, GMS6410, and GMS6414. Although the course can be taken concurrently with GMS6410 and/or GMS6414.

COURSE GOALS
Hypertension is a multifactorial disease and this course explores: 1) some of the current treatments available; 2) how cardiovascular, neural, endocrine, and renal function all influence blood pressure control; 3) how vascular endothelial dysfunction and inflammation are associated with hypertension; 4) how genetic, epigenetic, and environmental factors can determine the level of blood pressure; 5) the complexity of the factors that lead to hypertension.

LEARNING OUTCOMES
Upon completion of this course, students will be able to:
1. Understand how many individual body systems cooperate in the control of the normal blood pressure.
2. Understand how impairments in cardiovascular, neural, endocrine, and/or renal function can lead to hypertension.
3. Understand why the majority of hypertension is classified as “essential” or of unknown origin.
4. Understand the role of genetic, epigenetic, and environmental factors in the development of hypertension.
5. Develop an in-depth understanding of some of the research contributions that are shaping our current views on high blood pressure causes and consequences.

LEARNING RESOURCES
1. Recorded lectures with PowerPoint presentations and PDF handouts of the lectures (which may include additional explanatory material) is provided on the course website.
2. Required text: There is no required textbook although general background information can be obtained the online version of "Berne & Levy Physiology, 7th Edition" 2018. Author: Bruce M. Koeppen & Bruce A. Stanton. ISBN: 9780323393942. This is the required textbook for the preceding “Principles of Medical Physiology course (GMS 6400C)".
EXAMINATIONS AND GRADING
There are 2 examinations. Both exams are open book. You will receive an MS Word document with questions and space for answers. This will be provided $\frac{2}{3}$ weeks before the exam is due.

You will be assigned a topic for an assigned essay. You will be expected to write a short essay (5-10 pages of text, double spaced; no more than 30 references). The topic will be assigned to you, but you will also be given the opportunity to choose your own topic with the approval of the course director.

A numerical grade will be given for each graded component of the course.

Grading scale:

A numerical grade will be given at the end of the course and will be scored as follows:

- 93-100% = A
- 90-92% = A-
- 87-89% = B+
- 83-86% = B
- 80-82% = B-
- 77-79% = C+
- 73-76% = C
- 70-72% = C-
- 67-69% = D+
- 63-66% = D
- <63% = E

GRADING POLICY

The 2 open book exams will consist of “short note” questions, and each is worth 35% of the final grade. The assigned essay will be worth 30% of the final grade.

ACADEMIC HONESTY

Please review the complete policy of the University of Florida regarding academic dishonesty, found in the online student handbook at: https://www.dso.ufl.edu/sccr/process/student-conduct-honor-code/

Students are expected to abide by the University of Florida Academic Honesty Guidelines and to adhere to the following pledge:

We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honesty and integrity.

On all work submitted for credit by students at the university, the following pledge is either required or implied: *"On my honor, I have neither given nor received unauthorized aid in doing this assignment."*
IMPORTANT NOTICE ABOUT PLAGIARISM
Plagiarism is not tolerated at the University of Florida. Plagiarism may be punishable by expulsion from the course or the certificate program. If the plagiarism is detected after the certificate has been awarded, the certificate may be rescinded.

The University of Florida has an honor code that defines plagiarism as follows:

Section 3a: Plagiarism.

A student shall not represent as the student’s own work all or any portion of the work of another. Plagiarism includes but is not limited to:

1. Quoting oral or written materials including but not limited to those found on the internet, whether published or unpublished, without proper attribution.
2. Submitting a document or assignment which in whole or in part is identical or substantially identical to a document or assignment not authored by the student.

Please note that intent is not an element of this kind of violation so it is important to take great care to complete the written assignments in your own words.

For a complete description of the UF Honor Code and procedures, please visit:
https://www.dso.ufl.edu/sccr/process/student-conduct-honor-code/

For a good discussion about plagiarism and how to properly cite your sources, please visit:
http://mediasite.video.ufl.edu/Mediasite/Play/adaa44500eaf460a84f238e6b9a558f9

COURSE EVALUATION POLICY
Students are expected to provide professional and respectful feedback on the quality of instruction in this course by completing course evaluations online via GatorEvals. Guidance on how to give feedback in a professional and respectful manner is available at https://gatorevals.aa.ufl.edu/students/. Students will be notified when the evaluation period opens, and can complete evaluations through the email they receive from GatorEvals, in their Canvas course menu under GatorEvals, or via https://ufl.bluera.com/ufl/. Summaries of course evaluation results are available to students at https://gatorevals.aa.ufl.edu/public-results/.
GMS 6413 – Advances in Hypertension Research

2 credits

Lectures

1. Introduction to GMS6413 Dr. Baylis
2. Clinical Trials for Therapy Dr. DeHoff
3. Pharmacogenomics and Hypertension Dr. DeHoff
4. Metabolic Syndrome and Diabetes Dr. DeHoff
5. Single Gene Polymorphisms and Hypertension Dr. Wingo
6. The Kidney in Hypertension Dr. Baylis
7. Populations and Hypertension Dr. Segal
8. Salt Dependent Hypertension Dr. Weiner
9. Stress-Induced Hypertension Dr. Scheuer
10. Endothelial Dysfunction in Hypertension Dr. Christou
11. Fetal Programming in Hypertension Dr. Keller-Wood
12. Hypertension in Pregnancy Dr. Conrad
13. Oxidative Stress Dr. Sumners

Examinations: There will be 2 short note examinations that will be take-home examinations based on the lectures. The first exam will cover lectures 1-7, and the second examination will cover lectures 8-12.

Term paper (assigned essay): Please use the following as a guide for your term paper. Remember that this is not an examination. It is a paper, in which you will search the appropriate literature and cite primary literature or reviews (not basic textbooks). You are limited to a total length (without references) of 5-10 pages double spaced, and you are limited to 30 references.

Assigned topic for term paper
Increased activity of the renin-angiotensin-aldosterone system contributes to the etiology of many experimental models of hypertension, and drugs that antagonize components of the system play an important role in the treatment of hypertension in humans.

For this assignment:

Explain the roles of the systemic renin-angiotensin-aldosterone system and tissue renin-angiotensin systems in the control of blood pressure and as targets for the treatment of hypertension.

Please use at least 3 references that have been published within the last 3 years.

Your discussion should be grounded in your basic knowledge of physiology and supported by relevant scientific literature.